Modeling effects of human single nucleotide polymorphisms on protein-protein interactions.

نویسندگان

  • Shaolei Teng
  • Thomas Madej
  • Anna Panchenko
  • Emil Alexov
چکیده

A large set of three-dimensional structures of 264 protein-protein complexes with known nonsynonymous single nucleotide polymorphisms (nsSNPs) at the interface was built using homology-based methods. The nsSNPs were mapped on the proteins' structures and their effect on the binding energy was investigated with CHARMM force field and continuum electrostatic calculations. Two sets of nsSNPs were studied: disease annotated Online Mendelian Inheritance in Man (OMIM) and nonannotated (non-OMIM). It was demonstrated that OMIM nsSNPs tend to destabilize the electrostatic component of the binding energy, in contrast with the effect of non-OMIM nsSNPs. In addition, it was shown that the change of the binding energy upon amino acid substitutions is not related to the conservation of the net charge, hydrophobicity, or hydrogen bond network at the interface. The results indicate that, generally, the effect of nsSNPs on protein-protein interactions cannot be predicted from amino acids' physico-chemical properties alone, since in many cases a substitution of a particular residue with another amino acid having completely different polarity or hydrophobicity had little effect on the binding energy. Analysis of sequence conservation showed that nsSNP at highly conserved positions resulted in a large variance of the binding energy changes. In contrast, amino acid substitutions corresponding to nsSNPs at nonconserved positions, on average, were not found to have a large effect on binding affinity. pKa calculations were performed and showed that amino acid substitutions could change the wild-type proton uptake/release and thus resulting in different pH-dependence of the binding energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of GDF9 and BMP15 Polymorphisms in Mehraban Sheep to Find the Missenses as Impact on Protein

Utilization of fecundity genes such as GDF9 and BMP15 can help improve reproductive traits in sheep breeding programme. To evaluate effects of missense mutations on protein function, the polymorphisms of GDF9 and BMP15 genes were screened in twelve mehraban sheep using DNA sequencing, followed by protein structure modeling. Six single nucleotide polymorphism (SNPs) known as FecG mutations (G1-G...

متن کامل

The Single Nucleotide Polymorphisms in the C-reactive Protein Gene: are they Biomarkers of Cardiovascular Risk?

Recent pre-clinical and clinical studies have revealed the C-reactive protein gene (CRP) is related to the degree of acute rise in plasma C-reactive protein (CRP) levels. Moreover, single nucleotide polymorphisms (SNPs) in the CRP gene could associate with increased risk of cancer, atherosclerosis, diabetes mellitus, bowel disease, rheumatoid arthritis, psoriasis, obstructive pulmonary disease,...

متن کامل

Computational Prediction of the Effects of Single Nucleotide Polymorphisms of the Gene Encoding Human Endothelial Nitric Oxide Synthase

ABSTRACT           Background and Objective: Genetic variations in the gene encoding endothelial nitric oxide synthase (eNOS) enzyme affect the susceptibility to cardiovascular disease. Identification of the way these changes affect eNOS structure and function in laboratory conditions is difficult and time-consuming. Thus, it seems essential to ...

متن کامل

A Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes

It has been suggested that single nucleotide polymorphisms (SNPs) in genes involved in Toll-like receptors (TLRs) pathway may exhibit broad effects on function of this network and might contribute to a range of human diseases. However, the extent to which these variations affect TLR signaling is not well understood. In this study, we adopted a bioinformatics approach to predict the consequences...

متن کامل

Single Nucleotide Polymorphism Analysis of the Bone Morphogenetic Protein Receptor IB and Growth and Differentiation Factor 9 Genes in Rayini Goats (Capra hircus)

The FecB, a mutation in the bone morphogenetic protein receptor IB (BMPR-IB) gene, which increases the fecundity of Booroola Merino sheep, and FecGH, a mutation in the Growth and Differentiation Factor 9 (GDF9), which affects the fecundity of Cambridge and Belclare sheep in a dose sensitive manner, were analyzed as candidate genes associated with the prolificacy in Rayini goats. These polymorph...

متن کامل

The Effect of Uncoupling Protein Polymorphisms on Growth, Breeding Value of Growth and Reproductive Traits in the Fars Indigenous Chicken

The avianuncoupling protein (avUCP) is a member of the mitochondrial transporter superfamily that uncouples proton entry in the mitochondrial matrix from ATP synthesis. The polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used to estimate the allele and genotype frequencies of the UCP/HhaI polymorphisms and to determine associations between these polymorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 6  شماره 

صفحات  -

تاریخ انتشار 2009